Comparing notions of randomness

نویسندگان

  • Bart Kastermans
  • Steffen Lempp
چکیده

It is an open problem in the area of computable randomness whether Kolmogorov-Loveland randomness coincides with Martin-Löf randomness. Joe Miller and André Nies suggested some variations of Kolmogorov-Loveland randomness to approach this problem and to provide a partial solution. We show that their proposed notion of partial permutation randomness is still weaker than Martin-Löf randomness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lowness for Bounded Randomness Rod Downey and Keng

In [3], Brodhead, Downey and Ng introduced some new variations of the notions of being Martin-Löf random where the tests are all clopen sets. We explore the lowness notions associated with these randomness notions. While these bounded notions seem far from classical notions with infinite tests like Martin-Löf and Demuth randomness, the lowness notions associated with bounded randomness turn out...

متن کامل

A Decentralized Online Sortition Protocol

We propose a new online sortition protocol which is decentralized. We argue that our protocol has safety, fairness, randomness, non-reputation and openness properties. Sortition is a process that makes random decision and it is used in competitions and lotteries to determine who is the winner. In the real world, sortition is simply done using a lottery machine and all the participa...

متن کامل

Descriptive Set Theoretical Complexity of Randomness Notions

We study the descriptive set theoretical complexity of various randomness notions.

متن کامل

Bounded Randomness

We introduce some new variations of the notions of being Martin-Löf random where the tests are all clopen sets. We explore how these randomness notions relate to classical randomness notions and to degrees of unsolvability.

متن کامل

Higher Randomness Notions and Their Lowness Properties

We study randomness notions given by higher recursion theory, establishing the relationships Π1-randomness ⊂ Π1-Martin-Löf randomness ⊂ ∆1randomness = ∆1-Martin-Löf randomness. We characterize the set of reals that are low for ∆1 randomness as precisely those that are ∆ 1 1 -traceable. We prove that there is a perfect set of such reals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 411  شماره 

صفحات  -

تاریخ انتشار 2010